In this study, the transmission line concept and the electron transport theory are consolidated in a global modeling A Resilience Engineering Approach for the Risk Assessment of IT Services approach, the wave-electron-transport (WET) model, to account for the physical phenomena in millimeter-wave devices.No equivalent circuit model is required to represent the innate properties of the device.Hence, the model is reliable for both small- and large-signal analyses.The electrodes of a transistor act as coupled multi-conductor transmission lines at millimeter-wave bands.The WET model consists of a device solver to obtain solutions for copyright-transport equations of the intrinsic device, and an electromagnetic solver (EM solver) to provide solutions FORMATION OF A DIGITAL EDUCATION MODEL IN TERMS OF THE DIGITAL ECONOMY (BASED ON THE EXAMPLE OF EU COUNTRIES) for the governing transmission lines equations.
As it is crucial to transfer data between these two solvers, an interface scheme is also developed and included in the WET model.The extrinsic parameters of the device are extracted using a novel systematic technique merely based on the physical structure of the transistor.In this paper, the modeling procedure is applied to a fabricated GaN-HEMT device.Power sweep analysis has verified the accuracy of the proposed model under both linear and non-linear operations.Non-uniform voltage distribution caused by traveling waves over the electrodes is elaborately discussed to demonstrate the necessity of incorporating distributed effects.